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1. Introduction. The investigation of additive equations dates from at least
the time of Gauss, who investigated quadratics, cubics and quartics. More recent
progress concerning the solubility of systems of additive equations stems from a
fundamental series of papers by Davenport and Lewis spanning the 1960’s (see in
particular [11, 12, 13, 14]). When k ∈ N and p is a prime number, denote by Γ∗(k; p)
the least number s0 with the property that whenever s > s0, and a1, . . . , as ∈ Qp,
then the additive equation

a1x
k
1 + a2x

k
2 + · · ·+ asx

k
s = 0 (1.1)

possesses a solution x ∈ Qs
p \ {0}. Also, define Γ∗(k) to be the supremum, over

prime numbers p, of Γ∗(k; p). Then Davenport and Lewis [11] established that
for each natural number k, one has Γ∗(k) 6 k2 + 1. Indeed, equality holds here
whenever k = p − 1 for some prime number p. However, there are comparatively
few primes p for which so many variables are required to guarantee the solubility of
the associated equations. Thus, although a simple argument demonstrates that for
each natural number k exceeding 1, one has Γ∗(k; p) > 2k for infinitely many primes
p, it is essentially a classical result that whenever p > k4, one has Γ∗(k; p) 6 2k +1
(see, for example, the introduction of Atkinson and Cook [4] for a discussion of
this matter). A number of authors, moreover, have provided analogous conclusions
for systems of additive equations (see Cook [7], Atkinson, Brüdern and Cook [1, 2,
3], Meir [20]), and indeed non-trivial computational effort has also been expended
on the problem of calculating Γ∗(k; p) explicitly for smaller exponents k (see, in
particular, Cook [8, 9] and Atkinson and Cook [4]).

Motivated by such work, and especially the latter computations, the object of
this paper is to provide estimates which, as k varies, provide some indication of the
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number of “exceptional” primes p for which Γ∗(k; p) > 2k + 1, and also to measure
the complexity of the task of cataloguing the corresponding insoluble equations of
the shape (1.1). One could loosely describe our results as measuring the “difficulty”
of the local solubility problem for additive equations. Our methods and results
extend naturally to corresponding problems concerning the solubility of systems of
additive equations. Although such extensions are not inherently difficult, they lead
to technical and expositary complications which obscure the themes and ideas that
we wish to highlight herein, and thus we defer any consideration of such issues to
a possible future occasion.

We begin by discussing the existence of exceptional primes p with Γ∗(k; p) >
2k + 1. In order to set this discussion in context, we first observe that whenever p
is a prime number with p ≡ 1 (mod k), and q is not a kth power residue modulo p,
then the congruence xk ≡ qyk (mod p) has only the trivial solution with x ≡ y ≡ 0
(mod p). It follows that the equation

k−1∑
i=0

pi(xk
i − qyk

i ) = 0

has only the trivial solution x = y = 0 over Qp, whence for infinitely many primes
p one has Γ∗(k; p) > 2k. Our first theorem, which we establish in §2, provides a
simple criterion for the existence of primes p with Γ∗(k; p) > tk.

Theorem 1.1. Let t, δ and k be natural numbers with t > 3 and δ|k. Suppose that
p is a prime number with (p− 1, k) = δ. Then the following conclusions hold.

(i) Whenever δ > 4t−2 and

p 6 δ(t−1)/(t−2) − 3δ + 1,

one has Γ∗(k; p) > tk + 1.
(ii) Define δ0(t) and p0(δ, t) for each natural number t with t > 3 by

δ0(t) =
{

(
√

2)−118t/2−1, when t is odd,

18t/2−1, when t is even,

and

p0(δ, t) =
{

(
√

2δ)(t−1)/(t−2) − 4δ + 1, when t is odd,
√

2δ(t−1)/(t−2) − 4δ + 1, when t is even.

Then whenever δ > δ0(t), and the prime p satisfies p ≡ δ + 1 (mod 2δ) and
p 6 p0(δ, t), one has Γ∗(k; p) > tk + 1.

A less explicit version of Theorem 1.1(i) appears in Theorem 3.25 of Norton [23],
with explicit bounds for smaller values of t appearing in Corollary 3.28 of the latter
technical report.

At present, our knowledge concerning the distribution of prime numbers in arith-
metic progressions is unfortunately insufficient to guarantee that for a given large
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number δ, there exists a prime number p, in a given arithmetic progression modulo
δ, with p < 2δ2. Thus, although the existence of such primes is widely anticipated,
the conclusion of Theorem 1.1 for individual exponents k remains a conditional re-
sult. However, by employing relatively recent versions of the Bombieri-Vinogradov
theorem due to Fouvry [16] and Bombieri, Friedlander and Iwaniec [5], one may
successfully establish the desired conclusion in an average sense. In order to be
precise, we require some notation. When K is a large real number and r is a nat-
ural number, denote by Er(K) the number of exponents k, with 1 6 k 6 K, for
which Γ∗(k) 6 (r +1)k. Let Pr(k) denote the set of exceptional primes p for which
Γ∗(k; p) > rk + 1, and write Pr(k) = card(Pr(k)). Define also

pmax
r (k) = max

p∈Pr(k)
p,

when Pr(k) 6= ∅, and otherwise take pmax
r (k) = −∞. Then in §3 we extract the

following consequences from Theorem 1.1.

Corollary 1. For each large number K, one has

E2(K) � K

(
log log K

log K

)2

.

It follows from Corollary 1, in particular, that for almost all exponents k, there is
some prime number p with Γ∗(k; p) > 3k. Thus “exceptional” primes are essentially
ubiquitous.

Corollary 2. For every positive number ε, and for almost all exponents k, one has

pmax
2 (k) > k2(1− 1/(log k)2−ε).

Thus we find that “large” exceptional primes exist for almost all exponents.

Corollary 3. For every positive number ε, and for almost all exponents k, one has

P2(k) >
k

log k
(1− 1/(log k)2−ε).

We may conclude from Corollary 3 that the set of “exceptional” primes is almost
always somewhat large.

So far as upper bounds for pmax
r (k) are concerned, the most direct argument

involves applying Weil’s bound for the number of points on the hypersurface defined
by the equation

a0x
k
0 + a1x

k
1 + · · ·+ arx

k
r = 0, (1.2)

for fixed ai ∈ F×p (0 6 i 6 r), over the finite field Fp (see Weil [25], though earlier
work of Davenport and Hasse [10] establishes the same conclusion when r = 2).
Such an approach shows that Γ∗(k; p) 6 rk + 1 whenever

pr > (1− 1/k)((k − 1)r − (−1)r)p(r−1)/2(p− 1), (1.3)
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and from this one immediately obtains the upper bound

pmax
r (k) < k2r/(r−1) (1.4)

(see, for example, Theorem 1 of Meir [20]). Indeed, the lower bound (1.3) permits
one to establish an upper bound somewhat sharper than

pmax
2 (k) < (k − 1)2(k − 2)2. (1.5)

We remark here that all of these questions are well-understood for k = 2, and so
there is no loss in supposing throughout that k > 3. In §4, as a consequence of an
argument designed to bound the number of insoluble additive equations of degree
k, we obtain a modest refinement of the upper bound (1.4).

Theorem 1.2. For every natural number k, and for each integer r with r > 2, one
has pmax

r (k) < 1
2k2r/(r−1).

It transpires that our methods are rather more effective when the underlying
prime p and exponent k satisfy the condition that −1 is a kth power residue modulo
p.

Theorem 1.3. Suppose that k is a natural number, and that r is an integer with
r > 2. Suppose also that p is a prime number, and write δ = (p − 1, k). Then
whenever p ≡ 1 (mod 2δ) and

p > (r!)−1/(r−1)δ2r/(r−1),

one has Γ∗(k; p) 6 rk + 1.

The ideas underlying the proofs of Theorems 1.2 and 1.3 may be applied to
provide, under most cirumstances, estimates for the number of Fp-rational points
on hypersurfaces of the shape (1.2) superior to those arising directly from Weil’s
methods. We discuss such issues in §4. When it comes to bounding pmax

r (k) for
larger values of r, the methods of Weil are superseded by arguments stemming from
Stepanov’s methods. In §4, we exploit recent results of Heath-Brown and Konyagin
[19] so as to improve on the bound provided by Theorem 1.2 for r > 4.

Theorem 1.4. For every natural number k, and for each integer r with r > 2, one
has

pmax
r (k) � min{k(5r+3)/(3r−3), k(3r+5)/(2r−2)}.

The bound provided by Theorem 1.4 is superior to that of Theorem 1.2 for
r > 4, so long as k is sufficiently large. The second estimate implicit in Theorem
1.4 supersedes the first only for r > 10.

We refer to the primes p with p|k as singular primes (for the exponent k), and
those with p - k as regular primes (for the exponent k). An application of the
prime number theorem reveals that there are at most O(log k/ log log k) singular
primes for each large exponent k, and thus singular primes are comparatively few
in number. By combining this observation with the conclusions of Theorems 1.2
and 1.4, one easily obtains the upper bounds for Pr(k) recorded below.
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Theorem 1.5. For every natural number k, and for each integer r with 2 6 r 6 8,
one has

Pr(k) �
{

k(r+1)/(r−1) log log k/ log k, when 2 6 r 6 3,

k(2r+6)/(3r−3) log log k/ log k, when 4 6 r 6 8.

When r > 9, meanwhile, one has the upper bound

Pr(k) � k(r+7)/(2r−2)+ε,

valid for each positive number ε.

We turn our attention now to the anticipated discussion concerning the complex-
ity of the task of cataloguing the insoluble equations of the shape (1.1). Since this
project is at present too ill-defined to permit the announcement of our conclusions,
we first introduce some notation and conventions with which to make sense of the
problem. Unfortunately, such issues consume a fair amount of space, but this seems
unavoidable.

Loosely speaking, our idea is to describe a reduction procedure that associates
to an arbitrary diagonal form

Φ(x) = a1x
k
1 + a2x

k
2 + · · ·+ asx

k
s , (1.6)

a related form
Ω(y) = α1y

δ
1 + α2y

δ
2 + · · ·+ αty

δ
t ,

for suitable t, δ and α, with the property that the form Φ(x) possesses a non-trivial
p-adic zero if and only if Ω(y) does not belong to a certain finite list of exceptional
additive forms. Our objective is to determine the number of exceptional (insoluble)
additive forms Ω(y) that exist with a given number, t, of variables.

Before proceeding further, we briefly discuss the reduction procedure alluded to
above. Given additive forms Φ(x), as in (1.6), and

Ψ(y) = b1y
k
1 + · · ·+ bsy

k
s , (1.7)

we say that Φ(x) and Ψ(y) are p-equivalent, and we write Φ ∼ Ψ, when there exist
integers v, u1, . . . , us with the property that

Ψ(x) = pvΦ(pu1x1, . . . , p
usxs). (1.8)

The notion of p-equivalence of additive forms yields an equivalence relation, and
moreover an additive form Φ(x) possesses a non-trivial p-adic solution if, and only
if, every member of the equivalence class containing Φ(x) does so, as is evident
from (1.8). In the first step of our reduction, given the form Φ(x) which is of
central interest to us, we determine a p-equivalent form Ψ(x) of the shape (1.7)
that is representative of the equivalence class containing Φ(x), this representative
being selected by means of the Davenport-Lewis p-normalisation procedure (see
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Davenport and Lewis [11]). The most succinct description of this process for the
problem at hand employs the function ∂(Ψ) defined on the coefficients b of Ψ by
∂(Ψ) = b1b2 . . . bs. We begin by noting that if any coefficient ai of Φ(x) is zero, then
plainly Φ(x) possesses a non-trivial p-adic zero, and we declare that Φ(x) is not
associated with any form on the list of exceptional forms. Otherwise, when all of the
coefficients of Φ(x) are non-zero, we consider any form Φ∗(x) = a∗1x

k
1 + · · ·+ a∗sx

k
s ,

with a∗i ∈ Zp (1 6 i 6 s), satisfying the property that

|∂(Φ∗)|p = max
Ψ∼Φ

|∂(Ψ)|p,

where the maximum is taken over Ψ(x) ∈ Zp[x], and | · |p denotes the usual p-adic
valuation, normalised with |p|p = p−1. Here we note that the discreteness of the
p-adic valuation implies that the maximum does indeed exist. Moreover, the theory
developed by Davenport and Lewis (see [11]) ensures that when Ψ(x) ∈ Zp[x], and
Ψ ∼ Φ satisfies |∂(Ψ)|p = |∂(Φ∗)|p, then necessarily Ψ(y) takes the shape (1.7)
with no coefficient bi divisible by pk, and in which the number of coefficients not
divisible by pj is at least djs/ke for 1 6 j 6 k. With only modest contemplation,
one may engineer simple algorithms to accomplish the goal of reducing Φ to the
described shape Φ∗.

Next, for each prime number p, we define τ = τ(p, k) by means of the relation
pτ‖k, by which we mean that pτ |k but pτ+1 - k. We then define γ = γ(p, k) by

γ(p, k) =
{

τ + 2, when p = 2 and τ > 0,
τ + 1, otherwise.

By making use of a suitable version of Hensel’s lemma, the Davenport-Lewis theory
of additive equations ensures that the additive form Φ∗(y) possesses a non-trivial
p-adic solution whenever the congruence Φ∗(z) ≡ 0 (mod pγ) possesses a solution
in which, for some i with 1 6 i 6 s, one has (a∗i zi, p) = 1. Moreover, Davenport
and Lewis [11] show that such is guaranteed whenever s > k2.

In the second step of our reduction, we relabel variables so that the coefficients
of Φ∗(x) satisfy the condition

|a∗1|p > |a∗2|p > . . . > |a∗s|p. (1.9)

We consider first the situation in which p is an odd prime, and fix a primitive root
g modulo p2. Recall that g is then necessarily a primitive root for all powers of p.
We write φ(·) for Euler’s totient, and put δ = (φ(pγ), k). Note that for each index
i there exist integers mi, ui, vi with

a∗i ≡ pmiguiδ+vi (mod pγ),

and satisfying

0 6 mi < k, 0 6 vi < δ and 0 6 ui < φ(pγ)/δ.
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But (k/δ, φ(pγ)/δ) = 1, and thus there exists an integer l with

l(k/δ) ≡ 1 (mod φ(pγ)/δ),

whence also lk ≡ δ (mod φ(pγ)). It follows that gδ is congruent to a kth power
modulo pγ . In light of the latter observation, we put bi = pmigvi (1 6 i 6 s), and
write

Υ(z) = b1z
k
1 + · · ·+ bsz

k
s .

Then we see that Φ∗(x) has a non-trivial p-adic zero if and only if the congruence
Υ(z) ≡ 0 (mod pγ) possesses a solution z with (bizi, p) = 1 for some i with 1 6
i 6 s. By multiplying all of the coefficients of Υ(z) through by gδ−vi for a suitable
index i, and relabelling variables, if necessary, it is apparent that there is no loss of
generality in supposing that

m1 6 m2 6 . . . 6 ms 6 γ (1.10)

and

1 = (δ + 1)m1(v1 + 1) 6 (δ + 1)m2(v2 + 1) 6 . . . 6 (δ + 1)ms(vs + 1). (1.11)

Let us write Υ∗(z) for the additive form thus obtained, which we now declare to
be the reduced form corresponding to Φ(x) central to our discussion. It has the
property that Φ(x) possesses a non-trivial p-adic zero if and only if Υ∗(z) likewise
possesses a non-trivial p-adic zero. When p = 2 and τ > 0 we proceed similarly,
though now making use of the fact that (Z/2γZ)× is generated by the residues
(−1)l5m.

We discuss singular primes only briefly, noting that in principle one may con-
struct a list of all coefficients (α1, . . . , αs) satisfying αi = pmigvi , with mi > 0,
0 6 vi < δ, and subject to the conditions (1.10) and (1.11), and with at least
djs/ke of the αi not divisible by pj for 1 6 i 6 s and j > 1, such that the congru-
ence

α1z
k
1 + · · ·+ αsz

k
s ≡ 0 (mod pγ)

has no solution with (αizi, p) = 1 for any i with 1 6 i 6 s. In this way, one may
make a list of the exceptional forms for which one is unable to find a non-trivial p-
adic solution. We discuss singular primes no further, pausing only to note that this
discussion demonstrates via a trivial estimate that there are at most O((k log k)k2

)
exceptional forms for each singular prime p for the exponent k.

So far as regular primes p are concerned, the above procedure simplifies signifi-
cantly on account of the fact that τ = 0, and hence γ = 1. In this situation we find
that Φ(x) possesses a non-trivial p-adic zero whenever the congruence Υ(z) ≡ 0
(mod p) possesses a solution with (bizi, p) = 1 for some i with 1 6 i 6 s. Thus we
are reduced to considering the solubility of congruences of the shape

b1x
k
1 + · · ·+ btx

k
t ≡ 0 (mod p), (1.12)
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where bi = gvi for some vi with 0 6 vi < δ (1 6 i 6 t), where t > ds/ke, and in
which

0 = v1 6 v2 6 . . . 6 vt. (1.13)

A modicum of additional thought reveals that a list of insoluble congruences of
the shape (1.12) enables us to completely determine the solubility of Φ(x) over Qp

(not merely providing a sufficient condition for solubility), by examining the sets
of coefficients bi in Υ(z) divisible by the same power of p. Moreover, the existence
of an insoluble congruence of the shape (1.12) ensures the existence of an additive
form

Λ(x) =
k∑

i=1

pi−1(b1x
k
i1 + · · ·+ btx

k
it),

with only the trivial solution over Qp, whence Γ∗(k; p) > tk. In view of these
observations, we henceforth restrict attention to the solubility of the congruence
(1.12).

Consider then a regular prime p, and recall that δ = (p − 1, k) and that g is a
primitive root modulo p. For a natural number t, we consider the set B of t-tuples
(b1, . . . , bt) with bi = gvi for some vi with 0 6 vi < δ (1 6 i 6 t), and with v1 = 0.
We write Gt(k; p) for the subset of the latter t-tuples for which the congruence

b1x
k
1 + · · ·+ btx

k
t ≡ 0 (mod p)

has only the trivial solution x ≡ 0 (mod p), and we write Gt(k; p) for the cardinality
of Gt(k; p). Notice here that we do not order the vi as in (1.13), this extra freedom
making a comparison of our conclusions with the trivial estimate more transpar-
ent. However, by noting that whenever (gv1 , . . . , gvt) ∈ Gt(k; p), then necessarily
(gw1 , . . . , gwt) ∈ Gt(k; p) for any t-tuple of integers (w1, . . . , wt), with 0 6 wi < δ
and wi ≡ vσi − vσ1 (mod δ) (1 6 i 6 t) for some permutation σ of {1, 2, . . . , t},
we find that a more precise classification may be achieved in which the number of
exceptional t-tuples is reduced by a factor roughly of 1/t!. By exploiting our work
from §§2 and 4, we establish the following bounds for Gt(k; p) in §6.

Theorem 1.6. Let δ and k be natural numbers with δ|k, and suppose that p is a
prime number with (p− 1, k) = δ.

(i) One has
Gt(k; p) 6 δ2t−2p2−t.

(ii) Whenever δ(p1/(t−1) − 1) > p− 1, one has

Gt(k; p) > δt−1(p− 1)−t
t∏

r=1

(
p− ((p− 1)/δ + 1)r−1

)
.

Observe that the total number of t-tuples (b1, . . . , bt), subject to v1 = 0 and
bi = gvi for some vi with 0 6 vi < δ (2 6 i 6 t), is δt−1. Thus, given any
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positive number τ , and prime number p with (p− 1, k) = δ and p > δ(t−1)/(t−2)+τ ,
almost all “reduced congruences” in t variables are soluble non-trivially, since in
such circumstances one has Gt(k; p) � δt−1−τ .

We next consider the size of the catalogue of all exceptional congruences in t
variables for regular primes p, defining Gt(k) by

Gt(k) =
∑
p-k

Gt(k; p).

As an immediate consequence of Theorem 1.6, we are able to show that this cata-
logue of exceptional congruences is not particularly long.

Corollary 1. Suppose that k is a natural number with k > 3.
(i) For each exponent k one has

G3(k) � k3(log log k)2,

and for almost all exponents k, one has

G3(k) � k3/ log k.

(ii) When t > 4, one has
Gt(k) � kt log log k.

We note that the conclusion of part (ii) of Theorem 1.6, combined with standard
conjectures concerning the distribution of prime numbers in arithmetic progressions,
shows that when t is fixed and k is large, one has the conditional lower bound
Gt(k) � kt−1+1/(t−2)/ log k. Meanwhile, when t > 3 one finds that a trivial bound
yields the estimate Gt(k) � kt+2/(t−2). When t > k, of course, the classical theory
readily demonstrates that Gt(k) = 0. In such circumstances, the conclusions of
Theorem 1.6 and its corollary become inconsequential (see also Dodson [15] for
refinements of [11] relevant in this context). We should note also that when k is
odd, the upper bound

Γ∗(k) < (1/ log 2 + o(1))k log k

due to Tietäväinen [24] (see Chowla and Shimura [6] for earlier work) demonstrates
that Gt(k) = 0 for t > (1 + o(1))(log k)/(log 2).

Throughout this paper, the letter k denotes an integer exceeding 2, and ε denotes
a sufficiently small positive number. The implicit constants in Vinogradov’s well-
known notation, � and�, will depend at most on quantities occurring as subscripts
to the latter notation. When α ∈ R, we write dαe for the smallest integer greater
than or equal to α, and [α] for the largest integer not exceeding α. On occasion we
will abuse notation by speaking interchangeably of the finite field Fp, and the set
of congruence classes modulo p.

The author is grateful to Professor P. T. Bateman for supplying a copy of Nor-
ton’s technical report (see [23]). I am also very grateful to Don Lewis for encour-
agement, support, advice, and much else besides. The subject area of this paper
would, of course, be much the poorer were it not for his work and influence.
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2. Criteria for the existence of exceptional primes. At the core of our proof
of Theorem 1.1 is a simple counting argument. In order to describe the conclusion of
this elementary argument, we introduce some notation. When p is a prime number
and t and k are natural numbers, we define Et(k; p) to be the number of t-tuples
(g1, . . . , gt) with gi ∈ F×p (1 6 i 6 t), and satisfying the property that the equation

t∑
i=1

gix
k
i = 0 (2.1)

has only the trivial solution x = 0 over Fp.

Lemma 2.1. Let t, δ and k be natural numbers with t > 2 and δ > 2, and let p be
a prime number with (p− 1, k) = δ and

δ(p1/(t−1) − 1) > p− 1. (2.2)

Then one has

Et(k, p) >
t∏

r=1

(
p− ((p− 1)/δ + 1)r−1

)
. (2.3)

Proof. We establish the lemma by induction, noting that when t = 1 the lower
bound (2.3) follows immediately from the observation that whenever a ∈ F×p , then
the equation axk = 0 has only the trivial solution x = 0. Suppose then that T > 2,
and that the conclusion of the lemma holds for t < T . We may suppose that p is
a prime number with (p− 1, k) = δ, satisfying the condition (2.2) with t = T . For
the sake of concision, we write q = (p−1)/δ+1. By the definition of Et(k; p), there
exist ET−1(k; p) distinct (T−1)-tuples (a1, . . . , aT−1) with ai ∈ F×p (1 6 i 6 T−1),
and such that the equation

a1x
k
1 + · · ·+ aT−1x

k
T−1 = 0 (2.4)

has only the trivial solution over Fp. Fix any one such (T − 1)-tuple a. Then
on noting that the monomial xk takes precisely q distinct values as x varies over
Fp, it follows that as the xi vary over Fp for 1 6 i 6 T − 1, the polynomial
a1x

k
1+· · ·+aT−1x

k
T−1 takes at most qT−1 distinct values, including 0. Consequently,

there are at least p− qT−1 distinct choices for aT in Fp for which the equation

a1x
k
1 + · · ·+ aT−1x

k
T−1 = −aT

is insoluble, none of which is zero. But by hypothesis, the equation (2.4) has only
the trivial solution over Fp, so that by homogeneity, each of the associated equations

a1x
k
1 + · · ·+ aT−1x

k
T−1 = −aT xk

T
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has only the trivial solution. We thus conclude that

ET (k; p) > (p− qT−1)ET−1(k; p),

and so the inductive hypothesis follows with T replaced by T + 1. This completes
the proof of the lemma.

When−1 is not a kth power residue modulo p, one may exploit additive equations
with symmetric features in order to extract further dividends from the argument
of the proof of Lemma 2.1. In principle, this argument applies also for equations in
which more than two coefficients are equal, but in such circumstances the hypoth-
esis that −1 be a kth power non-residue must be replaced by a more complicated
condition with little utility.

Lemma 2.2. Let t, δ and k be natural numbers with t > 2 and δ > 2, and let p be
a prime number with (p−1, k) = δ and p ≡ δ+1 (mod 2δ). Write q = (p−1)/δ+1.
Then one has the following conclusions.

(i) Suppose that t is an even integer with t > 2. Then whenever

p > q
(

1
2q(q + 1)

)(t−2)/2
, (2.5)

one has

Et(k; p) > (p− 1)
(t−2)/2∏

r=1

(
p− q

(
1
2q(q + 1)

)r)
. (2.6)

(ii) Suppose that t is an odd integer with t > 3. Then whenever

p >
(

1
2q(q + 1)

)(t−1)/2
, (2.7)

one has

Et(k; p) > (p− 1)
(
p−

(
1
2q(q + 1)

)(t−1)/2
) (t−3)/2∏

r=1

(
p− q

(
1
2q(q + 1)

)r)
. (2.8)

Proof. We begin by observing that when p ≡ δ + 1 (mod 2δ), then (−1)(p−1)/δ =
−1, so that −1 is a kth power non-residue modulo p. It therefore follows that
whenever a ∈ F×p , then the equation a(xk + yk) = 0 has only the trivial solution
x = y = 0. The lower bound (2.6) is therefore immediate when t = 2. When u is
an integer with u > 1, write

Fu(k; p) = (p− 1)
u−1∏
r=1

(
p− q

(
1
2q(q + 1)

)r)
.

We claim that when u is an integer with u > 1, and p is a prime number with
(p− 1, k) = δ and p ≡ δ + 1 (mod 2δ), satisfying the lower bound

p > q
(

1
2q(q + 1)

)u−1
, (2.9)
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then there exist at least Fu(k; p) distinct u-tuples (a1, . . . , au) with ai ∈ F×p (1 6
i 6 u), such that the equation

u∑
i=1

ai(xk
2i−1 + xk

2i) = 0

has only the trivial solution over Fp.
Suppose that the above claim holds for u < U . We may suppose that p is a

prime number with (p− 1, k) = δ and p ≡ δ + 1 (mod 2δ), satisfying the condition
(2.9) with u = U . Then there exist FU−1(k; p) distinct (U−1)-tuples (a1, . . . aU−1),
with ai ∈ F×p (1 6 i 6 U − 1), such that the equation

U−1∑
i=1

ai(xk
2i−1 + xk

2i) = 0 (2.10)

has only the trivial solution over Fp. Fix any one such (U − 1)-tuple a. Note that
by symmetry, the polynomial xk + yk takes at most 1

2q(q − 1) distinct values as x

and y vary over Fp with xk 6= yk, and that this polynomial takes an additional q
values with xk = yk. It follows that as the xi vary over Fp for 1 6 i 6 2U − 2, the
polynomial

U−1∑
i=1

ai(xk
2i−1 + xk

2i)

takes at most
(

1
2q(q + 1)

)U−1 distinct values, including zero. Moreover, the poly-
nomial 1 + yk takes precisely q distinct values as y varies over Fp, and since −1 is
a kth power non-residue modulo p, none of the aforementioned values are zero. We
therefore conclude that the expression

(1 + yk)−1
U−1∑
i=1

ai(xk
2i−1 + xk

2i)

takes at most q
(

1
2q(q + 1)

)U−1 distinct values as y and xi (1 6 i 6 2U − 2) vary

over Fp. Consequently, there are at least p − q
(

1
2q(q + 1)

)U−1 distinct choices for
aU in Fp for which the equation

(1 + yk)−1
U−1∑
i=1

ai(xk
2i−1 + xk

2i) = −aU

is insoluble, none of which is zero. But by hypothesis, the equation (2.10) has
only the trivial solution over Fp, so that by homogeneity, each of the associated
equations

U−1∑
i=1

ai(xk
2i−1 + xk

2i) = −aU (yk
1 + yk

2 )
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has only the trivial solution with x = 0 and y = 0. We therefore conclude that
our initial claim holds for each U > 1, and part (i) of the lemma is an immediate
consequence of the trivial lower bound Et(k; p) > Ft/2(k; p), valid for every even
integer t with t > 2.

Suppose next that U is an integer with U > 2, and consider a (U − 1)-tuple
of integers (a1, . . . , aU−1) satisfying the condition that the equation (2.10) has no
non-trivial solution over Fp. We may suppose on this occasion that p is a prime
number with (p − 1, k) = δ and p ≡ δ + 1 (mod 2δ), satisfying the condition
p >

(
1
2q(q + 1)

)U−1. In view of our earlier discussion, there are at least FU−1(k; p)
such (U − 1)-tuples. As we observed earlier, the polynomial

U−1∑
i=1

ai(xk
2i−1 + xk

2i)

takes at most
(

1
2q(q + 1)

)U−1 distinct values as the xi vary over Fp, including zero.

Thus, there are at least p−
(

1
2q(q + 1)

)U−1 distinct choices for aU in Fp for which
the equation

U−1∑
i=1

ai(xk
2i−1 + xk

2i) = −aU

is insoluble, none of which is zero. But the equation (2.10) has only the trivial
solution over Fp, so that by homogeneity, each of the associated equations

U−1∑
i=1

ai(xk
2i−1 + xk

2i) = −aUxk
2U−1

has only the trivial solution x = 0. We thus conclude that for each integer U with
U > 2, one has

E2U−1(k; p) >
(
p−

(
1
2q(q + 1)

)U−1
)

E2U−2(k; p),

and part (ii) of the lemma is now an immediate consequence of the conclusion of
part (i).

We are now equipped to establish Theorem 1.1. Suppose that t, δ and k are
natural numbers with t > 3 and δ|k. Suppose also that p is a prime number with
(p− 1, k) = δ.

In order to establish part (i) of Theorem 1.1, we suppose that p and δ satisfy
the inequalities δ > 4t−2 and

p 6 δ(t−1)/(t−2) − 3δ + 1.



14 TREVOR D. WOOLEY

Under the latter condition, one has

δ(p1/(t−1) − 1)
p− 1

>
δ
((

δ(t−1)/(t−2)(1− 3δ−1/(t−2))
)1/(t−1) − 1

)
δ(δ1/(t−2) − 3)

=
δ1/(t−2)(1− 3δ−1/(t−2))1/(t−1) − 1

δ1/(t−2) − 3
. (2.11)

But whenever t > 3 and 0 < ξ < 3/4, one has

(1− ξ)1/(t−1) > (1− ξ)1/2 > 1− 2ξ/3.

We therefore deduce that for δ > 4t−2, one has the lower bound

(1− 3δ−1/(t−2))1/(t−1) > 1− 2δ−1/(t−2).

On recalling (2.11), we conclude that

δ(p1/(t−1) − 1)
p− 1

>
δ1/(t−2)(1− 2δ−1/(t−2))− 1

δ1/(t−2) − 3
= 1.

Thus the condition (2.2) holds, and it follows from the lower bound (2.3) of Lemma
2.1 that Et(k; p) > 1. The remarks in the introduction following (1.13) in this case
provide the conclusion that Γ∗(k; p) > tk, and this completes the proof of case (i)
of Theorem 1.1.

We now turn our attention to the proof of part (ii) of Theorem 1.1. Suppose
first that t is an odd integer with t > 3. We may then suppose in addition that δ
and p satisfy the inequalities

δ > (
√

2)−118t/2−1 and p 6 (
√

2δ)(t−1)/(t−2) − 4δ + 1.

Write u = (
√

2)−1(
√

2δ)−1/(t−2) and q = (p − 1)/δ + 1. Observe that when δ >
(
√

2)−118t/2−1, one has 0 < u 6 1/6. Then under the latter conditions, one finds
that (

1
2q(q + 1)

)(t−1)/2

p− 1
6

(
(
√

2δ)2/(t−2)(1− 3u)(1− 2u)
)(t−1)/2

(
√

2δ)(t−1)/(t−2)(1− 4u)

6
(1− 3u)(1− 2u)

1− 4u
.

But when 0 < u 6 1/6, one has

(1− 3u)(1− 2u)
1− 4u

= 1− u(1− 6u)
1− 4u

6 1,
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and thus we deduce that, under the aforementioned conditions, one has(
1
2q(q + 1)

)(t−1)/2
6 p− 1 < p.

The condition (2.7) therefore holds, and consequently it follows from the lower
bound (2.8) of Lemma 2.2(ii) that Et(k; p) > 1. The remarks in the introduction
following (1.13) thus provide the desired conclusion Γ∗(k; p) > tk. This completes
the proof of the first case of Theorem 1.1(ii), in which t is odd.

Finally, we suppose that t is an even integer with t > 4. We may now suppose
that δ and p satisfy the conditions

δ > 18t/2−1 and p 6
√

2δ(t−1)/(t−2) − 4δ + 1.

We now write u = (
√

2)−1δ−1/(t−2) and q = (p − 1)/δ + 1. Observe that when
δ > 18t/2−1, one has 0 < u 6 1/6. Then under these circumstances, one has

q
(

1
2q(q + 1)

)t/2−1

p− 1

6
(
√

2δ1/(t−2) − 3)
(
(δ1/(t−2) − 3/

√
2)(δ1/(t−2) − 2/

√
2)
)t/2−1

√
2δ(t−1)/(t−2) − 4δ

6
(1− 3u)((1− 3u)(1− 2u))t/2−1

1− 4u
6

(1− 3u)(1− 2u)
1− 4u

.

But as in the case for odd values of t, the latter quantity is at most 1 for 0 < u 6 1/6,
and thus the aforementioned conditions ensure that

q
(

1
2q(q + 1)

)t/2−1
6 p− 1 < p.

The condition (2.5) therefore holds, and hence it follows from the lower bound (2.6)
of Lemma 2.2(i) that Et(k; p) > 1. We consequently conclude as in previous cases
that Γ∗(k; p) > tk. This completes the proof of the remaining case of Theorem
1.1(ii).

3. The abundance of exceptional primes. In order to exploit the criteria
recorded in Theorem 1.1, we require useful information concerning the distribu-
tion of small primes in arithmetic progressions. This is a subject of considerable
difficulty, and indeed the conclusions available for a single arithmetic progression
fall far short of what would be required to obtain unconditional conclusions from
Theorem 1.1. Thus the sharpest available estimates for Linnik’s constant due to
Heath-Brown [18] show only that whenever (a, q) = 1, then the least prime p with
p ≡ a (mod q) satisfies p < cq11/2, in which c is an effectively computable constant.
It is generally believed that there should be an abundance of primes p with p ≡ 1
(mod k) and p � k(log k)2, for example, and such would provide positive conclu-
sions stemming from Theorem 1.1 for every natural number t. However, so far as
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unconditional conclusions are concerned, we are forced to resort to average results
available only relatively recently from work of Bombieri, Friedlander and Iwaniec
[5]. As is usual, we define

π(x) =
∑
p6x

p prime

1 and π(x; q, a) =
∑
p6x

p≡a (mod q)
p prime

1.

Theorem 3.1. Let a be a non-zero integer, and let A, x and Q be positive real
numbers with 2 6 Q 6 x3/4. Let Q′ be a positive real number with Q′ < Q, and
denote by Q the set of integers q with Q′ < q 6 Q satisfying (a, q) = 1. Write
θ = log Q/ log x and L = log x. Then there is an absolute constant B such that∑

q∈Q
|π(x; q, a)− π(x)/φ(q)|

6
(
B(θ − 1/2)2xL−1 + OA

(
xL−3(log L)2

))∑
q∈Q

φ(q)−1 + Oa,A(xL−A).

Proof. This is the main theorem of Bombieri, Friedlander and Iwaniec [5].

Before tackling the proof of Corollary 1 to Theorem 1.1, we provide an elementary
analytic estimate familiar to multiplicative number theorists.

Lemma 3.2. Let X and Y be real numbers with X > Y > 2. Then one has∑
Y <n6X

φ(n)−1 � log(X/Y ) + (log X)/Y.

Proof. One has the relation

φ(n)−1 = n−1
∏
p|n

(1− 1/p)−1 � n−1
∏
p|n

(1 + 1/p) 6 n−1
∑
d|n

d−1.

Thus one obtains∑
Y <n6X

φ(n)−1 �
∑

Y <n6X

n−1
∑
d|n

d−1 =
∑

16d6X

d−1
∑

Y/d<m6X/d

(md)−1

�
∑

16d6X

d−2(log(X/Y ) + O(d/Y )).

and the conclusion of the lemma follows immediately.

The proof of Corollary 1 to Theorem 1.1. Let K be a large real number, and
recall that E2(K) denotes the number of exponents k, with 1 6 k 6 K, for which
Γ∗(k) 6 3k. By Theorem 1.1(i) with t = 3, whenever k > 5 and there exists a
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prime p with p ≡ 1 (mod k) and p 6 k2 − 3k + 1, then one has Γ∗(k) > 3k + 1.
Thus we find that E2(K)−E2(K/2) is bounded above by the number of exponents
k, with K/2 < k 6 K, for which there exists no prime p with p ≡ 1 (mod k) and
p 6 K2/5. Writing x = K2/5, we therefore deduce that

E2(K)− E2(K/2) 6
∑

K/2<k6K

φ(k)
π(x)

|π(x; k, 1)− π(x)/φ(k)|

6
K

π(x)

∑
K/2<k6K

|π(x; k, 1)− π(x)/φ(k)|.

But in view of Theorem 3.1, it follows that

E2(K)− E2(K/2) � K

π(x)

Ξ
∑

K/2<k6K

φ(k)−1 + x(log x)−3

 , (3.1)

where we write

Ξ =
(

log K

log x
− 1

2

)2
x

log x
+

x(log log x)2

(log x)3
.

We next observe that Lemma 3.2 delivers the bound∑
K/2<k6K

φ(k)−1 � log 2 + (log K)/K � 1,

and moreover that

log K

log x
=

log K

2 log K − log 5
=

1
2

+ O

(
1

log K

)
.

On substituting the latter estimates into (3.1), we therefore conclude from the prime
number theorem that

E2(K)− E2(K/2) � log K

K

(
K2

(log K)3
+

K2(log log K)2

(log K)3

)
� K

(
log log K

log K

)2

.

The conclusion of Corollary 1 now follows on summing over dyadic intervals.

The proof of Corollary 2 to Theorem 1.1. Let ε be a fixed positive number. We
wish to establish that for almost all exponents k, there exists a prime p with p ≡ 1
(mod k) that satisfies the inequalities

k2(1− 1/(log k)2−ε) < p 6 k2 − 3k + 1. (3.2)



18 TREVOR D. WOOLEY

Given such a prime p, it follows from Theorem 1.1(i) that one has p ∈ P2(k),
whence

pmax
2 (k) > k2(1− 1/(log k)2−ε).

The conclusion of Corollary 2 follows immediately.
Let K be a large real number, and set

K1 = K
(
1− 1

4 (log K)ε−2
)
, ξ1 = K2

1 − 3K1 + 1 (3.3)

and
ξ2 = ξ1

(
1− 1

4 (log K)ε−2
)
.

Notice that whenever n lies between ξ2 and ξ1, and K1 < k 6 K, then necessarily
one has

n > K2(1− (log K)ε−2) > k2(1− (log k)ε−2).

Thus, in order to establish this corollary, it suffices to show that for almost all
exponents k with K1 < k 6 K, there is a prime number p with p ≡ 1 (mod k) and
ξ2 < p 6 ξ1.

Next write
$(k) = π(ξ1; k, 1)− π(ξ2; k, 1)

and
ν(k) = (π(ξ1)− π(ξ2))/φ(k).

By the prime number theorem with error term, one has

ν(k) � φ(k)−1K2(log K)ε−3.

Let E(X) denote the number of exponents k, with 1 6 k 6 X, for which there
exists no prime p with p ≡ 1 (mod k) satisfying (3.2). Then one has

E(K)− E(K1) 6
∑

K1<k6K

ν(k)−1|$(k)− ν(k)|

� K−1(log K)3−ε
∑

K1<k6K

|$(k)− ν(k)|.

But by the triangle inequality,

|$(k)− ν(k)| 6 |π(ξ1; k, 1)− π(ξ1)/φ(k)|+ |π(ξ2; k, 1)− π(ξ2)/φ(k)|.

Thus we deduce from Theorem 3.1 that

E(K)− E(K1) � K−1(log K)3−ε

Ξ
∑

K1<k6K

φ(k)−1 + K2(log K)−9

 , (3.4)
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where we write

Ξ =
(

log K

log ξ2
− 1

2

)2
K2

log K
+

K2(log log K)2

(log K)3
.

From Lemma 3.2, we have the upper bound∑
K1<k6K

φ(k)−1 � − log(1− 1
4 (log K)ε−2) + (log K)/K � (log K)ε−2.

Further, on recalling the definition of ξ2, one finds that

log K

log ξ2
=

log K

2 log K + O(| log(1− (log K)ε−2)|)
=

1
2

+ O((log K)ε−3).

Consequently, on substituting these estimates into (3.4), we arrive at the estimate

E(K)− E(K1) �
K

(log K)6−2ε
+

K(log log K)2

(log K)2

� K(log K)ε/2−2. (3.5)

Since the interval (K1,K] contains � K(log K)ε−2 integers, we may conclude that
almost all integers k with K1 < k 6 K satisfy the property that there exists a
prime p, with p ≡ 1 (mod k), and satisfying (3.2). The conclusion of the corollary
follows.

The proof of Corollary 3 to Theorem 1.1. Let ε be a fixed positive number, let K
be a large real number, and define K1 and ξ1 as in (3.3). We aim to show that for
all but K/(log K)ε/3 values of k with K1 < k 6 K, one has

|π(ξ1; k, 1)− π(ξ1)/φ(k)| < 1
4π(ξ1)φ(k)−1(log K)ε−2. (3.6)

Whenever K1 < k 6 K and p is a prime number with p ≡ 1 (mod k) and p 6 ξ1,
it is a consequence of Theorem 1.1(i) that p ∈ P2(k). Thus we find that P2(k) >
π(ξ1; k, 1), and hence (3.6) will provide the desired lower bound on P2(k). Let E(X)
denote the number of exponents k, with 1 6 k 6 X, for which the inequality (3.6)
fails. Then an application of the prime number theorem reveals that

E(K)− E(K1) 6
∑

K1<k6K

4φ(k)
π(ξ1)

(log K)2−ε|π(ξ1; k, 1)− π(ξ1)/φ(k)|

� K−1(log K)3−ε
∑

K1<k6K

|π(ξ1; k, 1)− π(ξ1)/φ(k)|.

But the argument leading to (3.4) and (3.5) above now leads to the conclusion that

E(K)− E(K1) � K(log K)ε/2−2.
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Furthermore, the interval (K1,K] contains � K(log K)ε−2 integers, and thus we
deduce that (3.6) holds for almost all integers k with K1 < k 6 K. In particular, as
a consequence of the prime number theorem, we deduce that for almost all integers
k with K1 < k 6 K, one has

P2(k) > π(ξ1; k, 1) > π(ξ1)φ(k)−1(1− 1
4 (log K)ε−2)

>
K2

log K
φ(k)−1

(
1− 5

6 (log K)ε−2
)

>
k

log k
(1− (log k)ε−2).

The conclusion of the corollary follows on covering the interval (x/ log x, x] by a
union of such intervals.

4. Upper bounds for exceptional primes. The ideas required in our proof of
Theorem 1.2 lay the foundations also for our proof of Theorem 1.6. The definition
of Gt(k; p) restricts coefficients to the coset representatives of Fk = F×p /(F×p )k,
wherein we write (F×p )k for the set of kth powers of elements of F×p . In order to
establish Theorem 1.6(i), we instead consider all possible choices for the coefficients.
By averaging over the set of all such coefficients, one may estimate in mean square
the discrepancy between the number of solutions of the corresponding equation over
Fp, and the expected number of solutions. From such an estimate one may infer an
upper bound for the number of congruences that possess only the trivial solution.
The ideas underlying this argument are motivated by the use of Bessel’s inequality
in the estimation of exceptional sets in Waring’s problem.

Let k be a natural number with k > 2, and let p be a prime number. We denote
by Ns(h; k, p) the number of solutions (x1, . . . , xs) of the congruence

h1x
k
1 + · · ·+ hsx

k
s ≡ 0 (mod p), (4.1)

with 0 6 xi < p (1 6 i 6 s). We first record a lemma that estimates the difference,
in mean square, between Ns(h; k, p) and its expected value ps−1.

Lemma 4.1. Let δ and k be natural numbers with δ|k, and suppose that p is a
prime number with (p − 1, k) = δ. Suppose also that s is a natural number with
s > 3. Then one has

p−1∑
h1=1

· · ·
p−1∑
hs=1

|Ns(h; k, p)− ps−1|2 6
δ − 1

δ
((δ − 1)s−1 − (−1)s−1)ps−2(p− 1)s+2.

Proof. Define the exponential sum f(u) by

f(u) =
p∑

x=1

ep(uxk),

where, as usual, we write ep(z) for exp(2πiz/p). Then it follows from orthogonality
that

Ns(h; k, p) = p−1

p∑
u=1

f(h1u) . . . f(hsu).



DIFFICULTY OF THE LOCAL SOLUBILITY PROBLEM 21

Thus we see that

p−1∑
h1=1

· · ·
p−1∑
hs=1

|Ns(h; k, p)− ps−1|2 = p−2

p−1∑
h1=1

· · ·
p−1∑
hs=1

∣∣∣∣∣
p−1∑
u=1

f(h1u) . . . f(hsu)

∣∣∣∣∣
2

= p−2

p−1∑
u=1

p−1∑
v=1

∆(u, v)s, (4.2)

where

∆(u, v) =
p−1∑
h=1

f(hu)f(−hv).

But, again by orthogonality, one finds that ∆(u, v) = pΘ(u, v)− p2, where Θ(u, v)
denotes the number of solutions of the congruence uxk ≡ vyk (mod p), with 0 6
x, y < p. When u/v ∈ (F×p )k, it is apparent that Θ(u, v) = δ(p − 1) + 1. On
the other hand, when 1 6 u, v < p and u/v 6∈ (F×p )k, the congruence uxk ≡ vyk

(mod p) has only the trivial solution x = y = 0, so that Θ(u, v) = 1. We therefore
conclude that for 1 6 u, v < p, one has

∆(u, v) =

{
(δ − 1)p(p− 1), when u/v ∈ (F×p )k,

−p(p− 1), when u/v 6∈ (F×p )k,

whence by (4.2),

p−1∑
h1=1

· · ·
p−1∑
hs=1

|Ns(h; k, p)− ps−1|2

= p−2
(
δ−1(p− 1)2 ((δ − 1)p(p− 1))s

+
(
(p− 1)2 − δ−1(p− 1)2

)
(−p(p− 1))s)

= ps−2(p− 1)s+2
(
δ−1(δ − 1)s + δ−1(δ − 1)(−1)s

)
.

The conclusion of the lemma follows immediately.

It is convenient to establish Theorem 1.3 before turning our attention to the
proof of Theorem 1.2. We first introduce some additional notation. We say that
the s-tuples (h1, . . . , hs) and (h′1, . . . , h

′
s) of non-zero elements of Fp are equivalent,

and we write h ∼ h′, when there exists an element ρ ∈ F×p with the property that
ρh′ih

−1
i ∈ (F×p )k for 1 6 i 6 s. With a moment’s thought, it is apparent that this

notion of equivalence does indeed constitute an equivalence relation on the set of s-
tuples with coordinates in F×p , and it is also evident that there are δs−1 equivalence
classes each containing the same number, (p − 1)s/δs−1, of elements. Whenever
h ∼ h′, moreover, we see that Ns(h; k, p) = Ns(h′; k, p).

Observe next that whenever σ is a permutation on the set {1, 2, . . . , s}, then

Ns((h1, . . . , hs); k, p) = Ns((hσ1, hσ2, . . . , hσs); k, p).
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Motivated by this observation, we define an equivalence relation ≈h on the set Σs of
permutations of {1, 2, . . . , s} by defining two permutations σ and τ to be equivalent,
whereupon we write σ ≈h τ , when

(hσ1, hσ2, . . . , hσs) ∼ (hτ1, hτ2, . . . , hτs).

Once again it is apparent that equivalence classes contain the same number of
elements. Write S(h) for the number of distinct equivalence classes in Σs with
respect to ≈h.

Lemma 4.2. Let δ and k be natural numbers with δ|k, and suppose that p is a
prime number with (p − 1, k) = δ. Suppose also that s is a natural number with
s > 3. Then whenever hi ∈ F×p (1 6 i 6 s), one has

|Ns(h; k, p)− ps−1| 6 S(h)−1/2(δ(δ − 1))(s−1)/2p(s−2)/2(p− 1). (4.3)

Proof. Let σi (1 6 i 6 S(h)) be a list of representatives of the equivalence classes
of Σs with respect to ≈h. Then for 1 6 i 6 S(h), one has

Ns((hσi1, . . . , hσis); k, p) = Ns((h1, . . . , hs); k, p).

But given any one permutation σi of this type, there are (p − 1)s/δs−1 distinct s-
tuples h′ with h′ ∼ (hσi1, . . . , hσis), and moreover, each such s-tuple h′ is equivalent
to (hσj1, . . . , hσjs) for no j with j 6= i. Thus we see that

p−1∑
g1=1

· · ·
p−1∑
gs=1

|Ns(g; k, p)− ps−1|2 >
(
S(h)(p− 1)s/δs−1

)
|Ns(h; k, p)− ps−1|2,

whence by Lemma 4.1,

S(h)(p− 1)sδ1−s|Ns(h; k, p)− ps−1|2 6 (δ − 1)s−1ps−2(p− 1)s+2.

The conclusion of the lemma follows immediately.

It is evident from Lemma 4.2 that whenever h is an s-tuple for which S(h) > 1,
then the estimate for Ns(h; k, p) provided by (4.3) will be superior to Weil’s bound
(at least, for large enough values of δ). Roughly speaking, one gains a factor of
S(h)−1/2, and this can be as large as (s!)−1/2. By working more closely with
Weil’s argument, one may obtain slightly more precise conclusions that go beyond
the latter factor (see long-forthcoming work of Granville and Wooley [17]). We are
now equipped to establish Theorem 1.3.

The proof of Theorem 1.3. Recall the hypotheses of the statement of Theorem 1.3,
write s = r + 1, and consider an s-tuple (h1, . . . , hs) with hi ∈ F×p (1 6 i 6 s).
We seek to establish that the congruence (4.1) possesses a solution x 6≡ 0 (mod p),
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whence we may infer from the argument leading to (1.13) above that Γ∗(k; p) 6
rk + 1.

Suppose first that for some i and j with 1 6 i < j 6 s, one has hih
−1
j ∈ (F×p )k.

Then by making a change of variables, we see that there is no loss of generality
in supposing that h1 = h2 = 1. But the hypothesis that p ≡ 1 (mod 2δ) ensures
that (−1)(p−1)/δ = 1, whence −1 is necessarily a kth power modulo p. Then the
congruence xk

1 + xk
2 ≡ 0 (mod p) has a non-trivial solution, and so (4.1) likewise

possesses a non-trivial solution. We may suppose henceforth that hih
−1
j ∈ (F×p )k

for no indices i and j with 1 6 i < j 6 s.
We consider next the situation in which hih

−1
j ∈ (F×p )k for no indices i and j

with 1 6 i < j 6 s. Suppose first that S(h) < s!. In such circumstances, there
exists a permutation σ ∈ Σs, different from the identity permutation, with

(h1, . . . , hs) ∼ (hσ1, . . . , hσs). (4.4)

From the definition of equivalence, we see that there exist residues ν ∈ F×p \ (F×p )k

and ξ1, . . . , ξs ∈ F×p for which one has hσi = νhiξ
k
i (1 6 i 6 s). Let g be a

primitive root modulo p, and let e(σ) denote the smallest positive integer e with
the property that ge = ν for some element ν associated with the permutation σ in
the above manner. Let ê be the least value of e(σ) as σ varies over all permutations
σ, different from the identity permutation, for which (4.4) holds. Then in fact every
permutation σ for which (4.4) holds is generated by any permutation τ for which
e(τ) = ê. For suppose otherwise. Then there is a permutation σ for which ê - e(σ).
We put f = (ê, e(σ)), and observe that f = uê + ve(σ) for some integers u and v.
Consequently, if we write µ for gf , we find that there is a permutation ω = τuσv

for which there exist residues ζ1, . . . , ζs ∈ F×p with hωi = µhiζ
k
i (1 6 i 6 s).

Since f < ê, we have contradicted the minimality of ê. We are therefore forced to
conclude that all permutations σ satisfying (4.4) are generated by τ . But the order
of τ is at most s, and so there are at most s permutations within each equivalence
class defined by ≈h. We thus deduce that S(h) > s!/s = r!.

In view of the argument of the previous paragraph, we may suppose in what
follows that S(h) > r!. If one were to have no non-trivial solution of the congruence
(4.1), then Ns(h; k, p) would count only the trivial solution x ≡ 0 (mod p). Under
such circumstances, we infer from Lemma 4.2 that

ps−1 − 1 6 S(h)−1/2(δ(δ − 1))(s−1)/2p(s−2)/2(p− 1),

whence ps−2 < S(h)−1δ2s−2. On recalling that in present circumstances, we may
assume that S(h) > r!, we conclude that necessarily

p < (r!)−1/(s−2)δ(2s−2)/(s−2).

It therefore follows that whenever p > (r!)−1/(r−1)δ2r/(r−1), then the congruence
(4.1) has a non-trivial solution. The conclusion of the theorem now follows in this
case, and the proof of Theorem 1.3 is complete.

Before embarking on the proof of Theorem 1.2, we recall the estimate for Gauss
sums provided by Theorem 1 of Montgomery, Vaughan and Wooley [22].
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Lemma 4.3. Let k be an even positive integer. Suppose that p is an odd prime
number with p ≡ k + 1 (mod 2k) and p - a. Then one has∣∣∣∣∣

p∑
x=1

ep(axk)

∣∣∣∣∣ 6 2−1/2(k2 − 2k + 2)1/2p1/2.

The proof of Theorem 1.2. Let k and r be natural numbers with k > 3 and r > 2,
and write p = pmax

r (k). We may assume without loss of generality that p > 0. Put
δ = (p− 1, k), and observe that whenever p ≡ 1 (mod 2δ), it follows from Theorem
1.3 that

p < (r!)−1/(r−1)δ2r/(r−1).

But plainly r! > 2r−1, and thus we obtain

p < 1
2δ2r/(r−1) 6 1

2k2r/(r−1).

Suppose next that p 6≡ 1 (mod 2δ), whence p ≡ δ + 1 (mod 2δ) and δ is nec-
essarily even. Write s = r + 1, consider integers h1, . . . , hs with 1 6 hi 6 p − 1
(1 6 i 6 s), and recall the definition of the exponential sum f(u) from the proof of
Lemma 4.1. We have

Ns(h; k, p)− ps−1 = p−1

p−1∑
u=1

f(h1u) . . . f(hsu).

But whenever (hiu, p) = 1, it follows from Lemma 4.3 that

|f(hiu)| 6 2−1/2(δ2 − 2δ + 2)1/2p1/2.

On considering the number of solutions of the underlying congruence xk
i ≡ yk

i

(mod p), moreover, it follows from orthogonality that, under the same conditions,
one has

p−1∑
u=1

|f(hiu)|2 = (δ − 1)p(p− 1).

In this way, an application of Hölder’s inequality yields the upper bound

|Ns(h; k, p)− ps−1| 6
s∏

i=1

(
p−1

(
max

16a6p−1
|f(hia)|

)s−2 p−1∑
u=1

|f(hiu)|2
)1/s

6 21−s/2(δ2 − 2δ + 2)s/2−1(δ − 1)ps/2−1(p− 1).

Since p = pmax
r (k), the congruence (4.1) can have only the trivial solution x ≡ 0

(mod p). Then one has Ns(h; k, p) = 1, whence

ps−1 − 1 6 21−s/2(δ2 − 2δ + 2)s/2−1(δ − 1)ps/2−1(p− 1).
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But this inequality implies that

ps/2−1 < 21−s/2δs−1,

and thus we conclude that

pmax
r (k) < 2−1δ(2s−2)/(s−2) 6 2−1k2r/(r−1).

This completes the proof of Theorem 1.2.

Our proof of Theorem 1.4 makes use of recent work of Heath-Brown and Konya-
gin [19] concerning upper bounds for the Gauss sum f(u) defined in the course of
the proof of Lemma 4.1.

Lemma 4.4. Suppose that (a, p) = 1. Then one has
p∑

x=1

ep(axk) �
{

k5/8p5/8, when p > k2,
k3/8p3/4, when k3/2 6 p < k2.

Proof. This is immediate from Theorem 1 of Heath-Brown and Konyagin [19].

The proof of Theorem 1.4. Suppose that k and r are natural numbers with k > 3
and r > 2, and write p = pmax

r (k). We may assume without loss of generality that
p > 0. Put δ = (p − 1, k), and recall the definition of the exponential sum f(u)
from the proof of Lemma 4.1. Also, write s = r+1, and consider integers h1, . . . , hs

with 1 6 hi 6 p − 1 (1 6 i 6 s). As in the proof of Theorem 1.2, we obtain the
upper bound

|Ns(h; k, p)− ps−1| 6
s∏

i=1

(
p−1

(
max

16a6p−1
|f(hia)|

)s−2 p−1∑
u=1

|f(hiu)|2
)1/s

6

(
max

16a6p−1
|f(a)|

)s−2

(δ − 1)(p− 1).

Since p = pmax
r (k), we find that Ns(h; k, p) = 1. When p > k2, it therefore follows

from Lemma 4.4 that

ps−1 − 1 � (k5/8p5/8)s−2k(p− 1),

whence
ps−2 � k(kp)5(s−2)/8.

We conclude in this case that

p � k(5s−2)/(3s−6) = k(5r+3)/(3r−3). (4.5)

When k3/2 6 p < k2, meanwhile, one obtains in a similar fashion the relation

ps−1 − 1 � (k3/8p3/4)s−2k(p− 1),

whence
ps−2 � k(kp2)3(s−2)/8.

Thus we conclude that in this second case, one has

p � k(3s+2)/(2s−4) = k(3r+5)/(2r−2). (4.6)

The conclusion of Theorem 1.4 is an immediate consequence of (4.5) and (4.6).
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5. The number of exceptional primes. Upper bounds for Pr(k) may be ob-
tained directly from Theorems 1.2 and 1.4 via estimates of Brun-Titchmarsh type.
Let A and α be real numbers with A > 1 and α > 3/2. Then Theorem 2 of
Montgomery and Vaughan [21] establishes that

∑
p≡1 (mod δ)

δ<p6Aδα

1 6
2Aδα

φ(δ) log(Aδα−1)
, (5.1)

uniformly in A, α and δ. When β > 2, it is a simple exercise in multiplicative
number theory to establish that∑

δ|k

δβφ(δ)−1 � kβφ(k)−1 � kβ−1 log log k.

When 1 < β 6 2, meanwhile, one obtains in similar fashion an estimate somewhat
sharper than ∑

δ|k

δβφ(δ)−1 � kβ−1 exp(c log k/ log log k),

for a suitable positive number c. We therefore find from (5.1) that when A > 1 and
α > 2, one has

∑
δ|k

∑
p≡1 (mod δ)

δ<p6Aδα

1 � k(α−2)/2(log k)−1
∑
δ|k

δ(α+2)/2φ(δ)−1 � kα−1 log log k

log k
. (5.2)

When A > 1 and 1 < α 6 2, meanwhile, it nonetheless follows that for each positive
number ε, one has ∑

δ|k

∑
p≡1 (mod δ)

δ<p6Aδα

1 �
∑
δ|k

δαφ(δ)−1 � kα−1+ε. (5.3)

Define the exponent αr by

αr =


2r/(r − 1), when 2 6 r 6 3,
(5r + 3)/(3r − 3), when 4 6 r 6 8,
(3r + 5)/(2r − 2), when r > 9.

Then the upper bounds presented in Theorem 1.5 follow by applying (5.2) and (5.3)
with α = αr, making use of the upper bounds for pmax

r (k) recorded in Theorem 1.2
for 2 6 r 6 3, and those made available via Theorem 1.4 for r > 3.
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6. Cataloguing exceptional equations. We now return to the topic of excep-
tional equations discussed, en passant, in §4. Let δ and k be natural numbers with
δ|k, and suppose that p is a prime number with (p− 1, k) = δ. Suppose also that s
is a natural number with s > 3, and let (h1, . . . , hs) be an s-tuple of integers with

1 6 hi 6 p− 1 (1 6 i 6 s). (6.1)

If the congruence (4.1) has only the trivial solution x ≡ 0 (mod p), then one has
Ns(h; k, p) = 1. Then on recalling the conclusion of Lemma 4.1, one finds that the
number of such s-tuples h satisfying (6.1) is bounded above by

p−1∑
h1=1

· · ·
p−1∑
hs=1

∣∣∣∣Ns(h; k, p)− ps−1

ps−1 − 1

∣∣∣∣2 6
(δ − 1)s−1ps−2(p− 1)s+2

(ps−1 − 1)2
. (6.2)

By the definition of Gs(k; p) and the discussion of §4, moreover, we see that each
element of Gs(k; p) generates (p − 1)s/δs−1 s-tuples h satisfying (6.1) for which
(4.1) has only the trivial solution x ≡ 0 (mod p). We may therefore conclude from
(6.2) that

Gs(k; p) 6
δ2s−2ps−2(p− 1)2

(ps−1 − 1)2
< δ2s−2p2−s.

This completes the proof of part (i) of Theorem 1.6.
In order to establish part (ii) of Theorem 1.6, we recall from Lemma 2.1 that

the number of s-tuples h satisfying (6.1), for which the congruence (4.1) has only
the solution x ≡ 0 (mod p), is at least as large as

s∏
r=1

(
p− ((p− 1)/δ + 1)r−1

)
,

provided only that δ(p1/(s−1)− 1) > p− 1. But as in the previous paragraph, there
are (p− 1)s/δs−1 such s-tuples h corresponding to each element of Gs(k; p). Thus
we infer that

Gs(k; p) > δs−1(p− 1)−s
s∏

r=1

(
p− ((p− 1)/δ + 1)r−1

)
,

and the proof of Theorem 1.6 is now complete.
The upper bounds recorded in the corollary to Theorem 1.6 follow directly from

Theorem 1.6(i) via the Brun-Titchmarsh theorem. Thus one obtains

Gt(k) 6
∑
δ|k

∑
δ<p6δ(2t−2)/(t−2)

p≡1 (mod δ)

δ2t−2p2−t,
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and by dividing the summation over p into dyadic intervals, it follows from the
Brun-Titchmarsh theorem that

Gt(k) �
∑
δ|k

∞∑
i=0

2iδ6δ(2t−2)/(t−2)

δ2t−2(2iδ)2−t
∑

2iδ<p62i+1δ
p≡1 (mod δ)

1

�
∑
δ|k

δt
∞∑

i=0
2iδ6δ(2t−2)/(t−2)

(2i)2−t 2iδ

φ(δ) log(2i+1)
.

But
∞∑

i=0
2iδ6δ(2t−2)/(t−2)

(i + 1)−1(2i)3−t � (log log(3δ))ν ,

where ν is 1 or 0 according to whether t = 3 or t > 3. Thus, on recalling that
φ(δ) � δ/ log log δ, we find that

Gt(k) �
∑
δ|k

δt(log log(3δ))1+ν � kt(log log k)1+ν .

This establishes the upper bounds of the corollary.
The lower bound for G3(k) recorded in part (i) of the corollary is an easy conse-

quence of the argument yielding the proof of Corollary 3 to Theorem 1.1, combined
with the conclusion of part (ii) of Theorem 1.6. For the former shows that for
almost all exponents k, there are � k/ log k prime numbers p with p ≡ 1 (mod k)
and

1
3k2 < p 6 2

3k2,

and the latter shows that for each such prime number p, one has G3(k; p) � k2.
Thus we conclude that for almost all exponents k, one has

G3(k) � k2(k/ log k) = k3/ log k.

This completes the proof of the corollary to Theorem 1.6.
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